Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 4: Applications of Derivatives - Section 4.4 - Concavity and Curve Sketching - Exercises 4.4 - Page 213: 17

Answer

Local minima: $(-1,-1)$ and $(1,-1)$ (both are absolute minima) Local maximum: $(0,0)$ Inflection points: $( \displaystyle \pm\frac{1}{\sqrt{3}},\ -\displaystyle \frac{5}{9})$

Work Step by Step

$y=f(x)=x^{4}-2x^{2}$ $f'(x)=4x^{3}-4x=4x(x^{2}-1)$ $f''(x)=12x^{2}-4=4(3x^{2}-1)$ Analyzing $f'(x)$, we see that it is defined everywhere, and has zeros $x=-1,0$ and $ 1\qquad$... (critical points) Applying the 2nd derivative test, $\left\{\begin{array}{lllll} x=-1, & f''(-1)=8\gt 0 & \Rightarrow(\min), & f(-1)=-1 & (-1,-1)\\ x=0, & f''(0)=-4 \lt 0 & \Rightarrow(\max), & f(0)=0 & (0,0)\\ x=1, & f''(1)=8\gt 0 & \Rightarrow(\min), & f(1)=-1 & (1,-1) \end{array}\right.$ $f: \left[\begin{array}{cccccccc} & & -- & | & ++ & | & -- & | & ++ & \\ & (-\infty & \searrow & -1 & \nearrow & 0 & \searrow & 1 & \nearrow & \infty) \end{array}\right]$ $f''(x)=0$ for $ x= \displaystyle \pm\frac{1}{\sqrt{3}} \qquad f( \pm\frac{1}{\sqrt{3}} )=-\frac{5}{9},\quad$ $(\displaystyle \pm\frac{1}{\sqrt{3}},-\frac{5}{9})$ are points of inflection. For graphing purposes: Concavity and points of inflection: $\left[\begin{array}{ccccccc} f''(x): & -\infty & ++ & \frac{1}{\sqrt{3}} & -- & \frac{1}{\sqrt{3}} & ++ & \infty\\ f(x): & & \cup & inf. & \cap & inf. & \cup & \end{array}\right]$ With these data, we graph $f(x).$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.