Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Section 3.8 - Related Rates - Exercises 3.8 - Page 162: 19

Answer

a) $\frac{dA}{dt}=\frac{1}{2}ab\cos\theta\frac{d\theta}{dt}$ b) $\frac{dA}{dt}=\frac{b}{2}(\sin\theta\frac{da}{dt}+a\cos\theta\frac{d\theta}{dt})$ c) $\frac{dA}{dt}=\frac{1}{2}(a\sin\theta\frac{db}{dt}+b\sin\theta\frac{da}{dt}+ab\cos\theta\frac{d\theta}{dt})$

Work Step by Step

Given $A=\frac{1}{2}ab\sin\theta$ a) Take $a, b$ as constants , we have Thus, $\dfrac{dA}{dt}=\frac{1}{2}ab\cos\theta\frac{d\theta}{dt}$ b) Now, take $b$ as a constant and differentiating $A$ w.r.t. time, we have: $\frac{dA}{dt}=\frac{b}{2}(\sin\theta\frac{da}{dt}+a\cos\theta\frac{d\theta}{dt})=\frac{1}{2}(a\sin\theta\frac{db}{dt}+b\sin\theta\frac{da}{dt}+ab\frac{d\sin\theta}{dt})$ or, $\frac{dA}{dt}=\frac{1}{2}(a\sin\theta\frac{db}{dt}+b\sin\theta\frac{da}{dt}+ab\cos\theta\frac{d\theta}{dt})$ c) When no variables are constant and then use the triple product rule, we get: $(uvw)'=u'vw+uv'w+uvw'$ $\frac{dA}{dt}=\frac{1}{2}(a\sin\theta\frac{db}{dt}+b\sin\theta\frac{da}{dt}+ab\frac{d\sin\theta}{dt})=\dfrac{1}{2}(a\sin\theta\frac{db}{dt}+b\sin\theta\frac{da}{dt}+ab\cos\theta\frac{d\theta}{dt})$ Hence, a) $\frac{dA}{dt}=\frac{1}{2}ab\cos\theta\frac{d\theta}{dt}$ b) $\frac{dA}{dt}=\frac{b}{2}(\sin\theta\frac{da}{dt}+a\cos\theta\frac{d\theta}{dt})$ c) $\frac{dA}{dt}=\frac{1}{2}(a\sin\theta\frac{db}{dt}+b\sin\theta\frac{da}{dt}+ab\cos\theta\frac{d\theta}{dt})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.