Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Section 3.8 - Related Rates - Exercises 3.8 - Page 162: 18

Answer

$\dfrac{ds}{dt} = \dfrac{x{\frac{dx}{dt}+y\frac{dy}{dt}+z\frac{dz}{dt}}}{\sqrt{(x^2+y^2+z^2)}}$ $\dfrac{ds}{dt} = \dfrac{(y\frac{dy}{dt}+z\frac{dz}{dt})}{\sqrt{(x^2+y^2+z^2)}}$; and $x{\dfrac{dx}{dt}=-(y\dfrac{dy}{dt}+z\dfrac{dz}{dt}})$

Work Step by Step

Given: $s={\sqrt{(x^2+y^2+z^2)}}$ Now, on differentiating both sides, we have: $\dfrac{ds^2}{dt}=\frac{d{{(x^2+y^2+z^2)}}}{dt}$ or, $2s\dfrac{ds}{dt}=2x{\dfrac{dx}{dt}+2y\dfrac{dy}{dt}+2z\dfrac{dz}{dt}}$ or, $\dfrac{ds}{dt} = \frac{x{\frac{dx}{dt}+y\frac{dy}{dt}+z\frac{dz}{dt}}}{\sqrt{(x^2+y^2+z^2)}}$ Now, take $x$ as a constant, then $s\dfrac{ds}{dt}=y\dfrac{dy}{dt}+z\dfrac{dz}{dt}$ or, $0=x{\frac{dx}{dt}+y\frac{dy}{dt}+z\frac{dz}{dt}}$ $x{\frac{dx}{dt}=-(y\frac{dy}{dt}+z\frac{dz}{dt}})$ Hence, $\dfrac{ds}{dt} = \dfrac{x{\frac{dx}{dt}+y\frac{dy}{dt}+z\frac{dz}{dt}}}{\sqrt{(x^2+y^2+z^2)}}$ $\dfrac{ds}{dt} = \dfrac{(y\frac{dy}{dt}+z\frac{dz}{dt})}{\sqrt{(x^2+y^2+z^2)}}$; and $x{\dfrac{dx}{dt}=-(y\dfrac{dy}{dt}+z\dfrac{dz}{dt}})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.