Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 16: Integrals and Vector Fields - Section 16.5 - Surfaces and Area - Exercises 16.5 - Page 990: 48

Answer

$$\dfrac{(36 \sqrt 3- 32 \sqrt 2+4)}{15}$$

Work Step by Step

Apply cylindrical coordinates. $ x=r \cos \theta ;\\ y= r \sin \theta ;\\ z \gt 0$ We know that $ r(r, \theta)=xi+yj+zk $ or, $ r^2=x^2+y^2+z^2$ $ r_x=\lt 1,0, \sqrt x \gt ; \\ r_{y}=\lt 0, 1, \sqrt {y} \gt $ Also, $|r_x\times r_{y}|=\sqrt {x+y+1}$ $$ Area=\int_0^{1} \int_0^{1} (\sqrt {x+y+1}) \space dy \space dx\\=\int_0^{1} [\dfrac{2}{3 } \times (x+y+1)^{3/2}]_0^{1} \\= \dfrac{(36 \sqrt 3- 32 \sqrt 2+4)}{15}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.