Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 16: Integrals and Vector Fields - Section 16.5 - Surfaces and Area - Exercises 16.5 - Page 990: 47

Answer

$$2 \ln 2+3$$

Work Step by Step

Apply cylindrical coordinates. $ x=r \cos \theta ;\\ y= r \sin \theta ;\\ z \gt 0$ We know that $ r(r, \theta)=xi+yj+zk $ or, $ r^2=x^2+y^2+z^2$ Now, $ r_x=\lt 1,0,2x- \dfrac{2}{x} \gt ; \\ r_{\theta}=\lt 0, 1, \sqrt {15} \gt $ Also, $|r_x\times r_{y}|=\dfrac{2}{x}+2x $ Now, $$ Area=\int_1^{2} \int_0^{1} (\dfrac{2}{x}+2x) \space dy \space dx \\=[2 \ln x+x^2]_1^{2} \\= 2 \ln 2+3$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.