Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 16: Integrals and Vector Fields - Section 16.1 - Line Integrals - Exercises 16.1 - Page 944: 22

Answer

$6\pi$

Work Step by Step

To find the the line integral, we simply compute $\displaystyle \int_{a}^bf(\vec{r}(t))||\vec{r}'(t)||dt$ where $\quad\displaystyle f(x,y) = x - y + 3 \quad$ , $\quad \vec{r}(t) = \langle \cos(t), \sin(t) \rangle\quad$ , $\quad a = \displaystyle 0\quad$ , and $\quad b = 2\pi$ $\vec{r}'(t) = \langle -\sin(t), \cos(t) \rangle$ $||\vec{r}'(t)|| = \sqrt{(-\sin(t))^2 + (\cos(t))^2} = \sqrt{\sin^2(t)+\cos^2(t)} = \sqrt{1} = 1$ $f(\vec{r}(t)) = \displaystyle \cos(t) - \sin(t) + 3$ $\displaystyle \int_{2\pi}^0(\cos(t) - \sin(t) + 3)(1)dt$ $[\sin(t)+\cos(t)+3t]_{x=0}^{x=2\pi}$ $(\sin(2\pi) + \cos(2\pi)+3(2\pi))-(\sin(0) + \cos(0)+3(0))$ $(0+1+6\pi) - (0+1+0)$ $6\pi$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.