Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 16: Integrals and Vector Fields - Section 16.1 - Line Integrals - Exercises 16.1 - Page 944: 17

Answer

$\displaystyle \sqrt{3}\ln(\frac{b}{a})$

Work Step by Step

We calculate the line integral as follows: $\vec{r}(t) = \langle t, t, t\rangle\qquad\qquad\therefore\vec{r}'(t) =\langle 1, 1, 1\rangle$ $\displaystyle \int_a^bf(\vec{r}(t))|\vec{r}'(t)|dt = \int_a^b\frac{t+t+t}{t^2+t^2+t^2}\sqrt{1^2+1^2+1^2}dt$ $\displaystyle \sqrt{3}\int_a^b\frac{3t}{3t^2}dt=\sqrt{3}\int_a^b\frac{1}{t}dt$ $\displaystyle \sqrt{3}[\ln(t)]^{t = b}_{t = a}$ $\sqrt{3}[\ln(b) - \ln(a)]$ $\displaystyle \sqrt{3}\ln(\frac{b}{a})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.