Answer
$1$
Work Step by Step
As we know that $ds=\sqrt{(\dfrac{dx}{dt})^2+(\dfrac{dy}{dt})^2+(\dfrac{dz}{dt})^2} dt$
Here, $ds=\sqrt{(1)^2+( 3 )^2+(1)^2} dt \implies ds= \sqrt {3} dt$
Line integral: $l=\int_C \dfrac{\sqrt 3}{x^2+y^2+z^2} ds$
or, $ (\sqrt{3}) \int_{1}^{\infty} \dfrac{\sqrt 3}{t^2+t^2+t^2} dt=\int_{1}^{\infty} \dfrac{3}{3t^2} dt$
Thus, $l=[\dfrac{-1}{t}]_{1}^{\infty}=1$