Answer
$3 \sqrt{14}$
Work Step by Step
As we know that $ds=\sqrt{(\dfrac{dx}{dt})^2+(\dfrac{dy}{dt})^2+(\dfrac{dz}{dt})^2} dt$
Here, $ds=\sqrt{(-1)^2+( -3 )^2+(-2)^2} dt \implies ds= \sqrt {14} dt$
Line integral: $l=\int_C (x+y+z) ds$
or, $(\sqrt{14}) \int_{0}^{1} (1-t+2-3t+3-2t) dt=\sqrt{14}\int_{0}^{1} (2-2t) dt$
or, $=3 \sqrt {14} (2-1)$
Thus, $l=\int_C (x+y+z) ds=3 \sqrt{14}$