Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 15: Multiple Integrals - Section 15.3 - Area by Double Integration - Exercises 15.3 - Page 887: 25

Answer

40000*(1-(e$^{-2}$)*ln(7/2$)\approx$43,329

Work Step by Step

$\int_{-5}^{5}$$\int_{-2}^{0}$$\frac{(10000e^{y})}{(1+\lvert \frac{x}{2}\rvert)}$dydx $20000\int_{-5}^{5}(\frac{1}{2+\lvert x\rvert}-\frac{e^{-2}}{2+\lvert x\rvert}$)dx $20000*(1-e^{-2})\int_{-5}^{5}\frac{dx}{2+\lvert x\rvert}$ $20000*(1-e^{-2})(\int_{-5}^{0}\frac{dx}{2-x}+\int_{0}^{5}\frac{dx}{2+x}$ $20000*(1-e^{-2})(-ln(2)+ln(2-(-5))+ln(2+5)-ln2)$ $20000*(1-e^{-2})*2(ln7-ln2)$ $40000*(1-e^{-2})*ln(7/2)\approx43,329$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.