Answer
$|f(x,y) -f(0,0) | \lt \epsilon $
Work Step by Step
We have $f(x,y)=x^2+y^2$ and $f(0,0)=0$
Now, $|f(x,y) -f(0,0) | \lt \epsilon $
or, $|x^2+y^2-0| \lt 0.01 $
This implies that $\sqrt {x^2+y^2 } \lt 0.1$
Suppose $\delta =0.1$
So $\sqrt {x^2+y^2 } \lt \delta$
Thus, $|f(x,y) -f(0,0) | \lt \epsilon $