Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 14: Partial Derivatives - Section 14.2 - Limits and Continuity in Higher Dimensions - Exercises 14.2 - Page 798: 64

Answer

Limit does not exist.

Work Step by Step

The polar-coordinates are defined as: $x= r \cos \theta , y = r \sin \theta$ and $r^2=x^2+y^2$ $ \lim\limits_{(x,y) \to (0,0) } f(x,y)=\lim\limits_{(x,y) \to (0,0) } \dfrac{2x}{x^2+x+y^2}$ or, $=\lim\limits_{r \to 0} \dfrac{ 2 r \cos \theta}{r^2+r\cos \theta}$ or, $=\lim\limits_{r \to 0} \dfrac{ 2 \cos \theta}{r+\cos \theta}$ Suppose $ a \cos \theta \to 0$; $\lim\limits_{a \cos \theta \to 0} \dfrac{ 2 \cos \theta}{ cos \theta(a+1) }=\dfrac{2}{a+1}$ Then we can see that for this case, the limit is not a unique value. Thus, $ \lim\limits_{(x,y) \to (0,0) } f(x,y)=\lim\limits_{(x,y) \to (0,0) } \dfrac{2x}{x^2+x+y^2}$ =Limit does not exist.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.