Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 13: Vector-Valued Functions and Motion in Space - Practice Exercises - Page 776: 4

Answer

$\dfrac{\pi}{2}$

Work Step by Step

$v(t)=\dfrac{dr}{dt}=i[e^t(\cos t -\sin t) ]+j [e^t(\sin t +\cos t) ]$ and $a(t)=\dfrac{dv(t)}{dt}=-2 e^t ( \sin t i- \cos t j)$ Let us suppose that $\theta$ be the angle between $r$ and $a(t)$ Thus, $\theta =\cos^{-1} [\dfrac{r \cdot a(t)}{|r| |a(t)|}]$ or, $=arccos [\dfrac{ e^t \cos t \times (-2 e^t \sin t) +(e^t \sin t) (2e^t \cos t)}{\sqrt {(e^t \cos t )^2+(e^t \cos t )^2 \cdot \sqrt {(-2 e^t \sin t)^2 +( e^t \cos t)^2}}}]$ or, $\theta=\dfrac{\pi}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.