Answer
$(\dfrac{5}{2},\dfrac{7}{2},\dfrac{9}{2})$
Work Step by Step
Formula to calculate the unit vector $\hat{\textbf{u}}$ is: $\hat{\textbf{u}}=\dfrac{u}{|u|}$
$u=\overrightarrow{P_1P_2}=P_2-P_1$
Here,$P_1$ and $P_2$ are two vectors .
or, $u=-i-j-k$
Now $|u|=\sqrt{(1)^2+(-1)^2+(-1)^2}=\sqrt {3}$
Thus, $\hat{\textbf{u}}=\dfrac{-i-j-k}{\sqrt 3}=(\dfrac{-1}{\sqrt 3} i-\dfrac{1}{\sqrt 3}j-\dfrac{1}{\sqrt 3}k)$
Apply Mid-point formula.
Thus, we have $(\dfrac{x_1+x_2}{2},\dfrac{y_1+y_2}{2},\dfrac{z_1+z_2}{2})=(\dfrac{3+2}{2},\dfrac{4+3}{2},\dfrac{5+ 4}{2})$
or, $=(\dfrac{5}{2},\dfrac{7}{2},\dfrac{9}{2})$