Answer
Cartesian equation: $y^2 - x^2 = 1, y \geq 1$ --------------
![](https://gradesaver.s3.amazonaws.com/uploads/solution/8e36c09a-e68d-4a13-9a46-be8fa9c474c8/result_image/1550797975.png?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAJVAXHCSURVZEX5QQ%2F20250215%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20250215T143656Z&X-Amz-Expires=900&X-Amz-SignedHeaders=host&X-Amz-Signature=31c0a69e94c4e3516df3f4333ddc0cee9a801dd32b904fc2a9f2bbbf4a484f46)
Work Step by Step
(a) $x =sinh \space t$
$x^2 = sinh^2 \space t$
$-x^2 = -sinh^2 \space t$
$y =cosh \space t$
$y^2 = cosh^2 \space t$
Adding both equations:
$y^2 - x^2 = cosh^2t-sinh^2t$
$y^2 - x^2 = 1$
- Notice, the parametric equation is only valid for $y \geq 1$, since $cosh \space t$ has a minimum value of $1$. Therefore, the cartesian equation should also have this condition: $y^2 - x^2 = 1, y \geq 1$ ----- (b) 1. Plot points determined by values for $t$.
I used -3, -2, -1, 0, 1, 2 and 3.
2. Join them to produce a curve.
3. Draw an arrow indicating which direction the curve goes from $t = -3$ to $t= 3$