Answer
$F=1.8C+32$
$\left[\begin{array}{lll}
{}^{o}C & & {}^{o}F\\
30 & 1.8(30)+32= & 86\\
22 & 1.8(22)+32\approx & 72\\
-10 & 1.8(-10)+32= & 14\\
-14 & 1.8(-14)+32\approx & 7
\end{array}\right]$
Work Step by Step
If F is a linear function of C, then $F=mC+b.$
Given (0,32) and (100, 212), we find m
$m=\displaystyle \frac{212-32}{100-0}=\frac{180}{100}=1.8$
Since we are given the point (0,32), the y-intercept,
it follows that $b=32$
Thus,
$F=1.8C+32$
$\left[\begin{array}{lll}
{}^{o}C & & {}^{o}F\\
30 & 1.8(30)+32= & 86\\
22 & 1.8(22)+32\approx & 72\\
-10 & 1.8(-10)+32= & 14\\
-14 & 1.8(-14)+32\approx & 7
\end{array}\right]$