Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 1 - Section 1.3 - Linear Functions and Models - Exercises - Page 93: 100

Answer

$C=\displaystyle \frac{5}{9}F-\frac{160}{9}$, (C as a linear function of F) $F=104,\displaystyle \quad C=\frac{5}{9}(104)-\frac{160}{9}=40$ $F=77,\displaystyle \quad C=\frac{5}{9}(77)-\frac{160}{9}=25$ $F=14,\displaystyle \quad C=\frac{5}{9}(14)-\frac{160}{9}=-10$ $F=-40,\displaystyle \quad C=\frac{5}{9}(-40)-\frac{160}{9}=-40$

Work Step by Step

If $F=1.8C+32 $, as we found in the previous problem, we solve for $C:$ $F=1.8C+32\qquad/-32$ $F-32=\displaystyle \frac{9}{5}C\qquad/\times\frac{5}{9}$ $\displaystyle \frac{5}{9}F-\frac{5}{9}\cdot 32=C$ $C=\displaystyle \frac{5}{9}F-\frac{160}{9}$, (C as a linear function of F) $F=104,\displaystyle \quad C=\frac{5}{9}(104)-\frac{160}{9}=40$ $F=77,\displaystyle \quad C=\frac{5}{9}(77)-\frac{160}{9}=25$ $F=14,\displaystyle \quad C=\frac{5}{9}(14)-\frac{160}{9}=-10$ $F=-40,\displaystyle \quad C=\frac{5}{9}(-40)-\frac{160}{9}=-40$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.