Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 2 - Section 2.4 - The Precise Definition of a Limit - 2.4 Exercises - Page 114: 17

Answer

$\lim\limits_{x \to -3} (1-4x)= 13$

Work Step by Step

Let $\epsilon \gt 0$ be given. Let $\delta = \frac{\epsilon}{4}$ Suppose that $\vert x-(-3) \vert \lt \delta$. Note that $~~\vert x-(-3) \vert = \vert x+3 \vert$ Then: $\vert (1-4x)-13 \vert = \vert -4x-12 \vert = \vert -4(x+3) \vert = 4\vert x+3 \vert \lt 4\delta = 4(\frac{\epsilon}{4}) = \epsilon$ Therefore, $\lim\limits_{x \to -3} (1-4x)= 13$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.