Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 2 - Section 2.3 - Calculating Limits Using the Limit Laws - 2.3 Exercises - Page 102: 6

Answer

$\lim\limits_{u \to -2}(\sqrt{u^4+3u+6})=4$

Work Step by Step

$\lim\limits_{u \to -2}(\sqrt{u^4+3u+6})$ $=\sqrt{\lim\limits_{u \to -2}(u^4+3u+6)}$ (root law) (we assume that $\lim\limits_{u \to -2}(u^4+3u+6)\geq0$) $=\sqrt{\lim\limits_{u \to -2}u^4+\lim\limits_{u \to -2}3u+\lim\limits_{u \to -2}6}$ (addition law) $=\sqrt{\lim\limits_{u \to -2}u^4+3\lim\limits_{u \to -2}u+\lim\limits_{u \to -2}6}$ (constant multiple law) $=\sqrt{(-2)^4+3\times(-2)+6}$ $=4$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.