Answer
Convergent
Work Step by Step
$\int_1^\infty f(x)dx=\int_1^\infty x^{2}e^{-x^{3}}dx$
$=\lim\limits_{t \to \infty}\int_1^t x^{2}e^{-x^{3}}dx$
Let $u=-x^{3}$, so $dx=-\frac{du}{3x^{2}}$
$=\lim\limits_{t \to \infty}-\frac{1}{3}\int_{-1}^{-t^{3}} e^{u}du$
$=-\frac{1}{3}\lim\limits_{t \to \infty}[e^{u}]_{-1}^{-t^{3}} $
$=\frac{1}{3e} $
Hence, the given series is convergent.