Answer
Divergent
Work Step by Step
$\Sigma \frac{n}{n^2+1}$
$\int_{1}^{\infty}\frac{x}{x^2+1}dx=\lim\limits_{t \to \infty}\int_{1}^{\infty}\frac{x}{x^2+1}dx$
$\int_{1}^{\infty}\frac{x}{x^2+1}dx$
$u=x^2+1$
$du=2xdx$
$\lim\limits_{t \to \infty}\int_{1}^{\infty}\frac{x}{x^2+1}dx=\lim\limits_{t \to \infty}[\frac{1}{2}ln(u)]^{t}_{2}=\infty-\frac{1}{2}ln(2)=\infty$
Divergent