Answer
$F(x)=h\circ g\circ f$ where
$f(x)=x+\sqrt x$
$g(x)=\sqrt x$
$h(x)=\frac{1}{x}$
Work Step by Step
let: $f(x)=x+\sqrt x$
$g(x)=\sqrt x$
$h(x)=\frac{1}{x}$
$g(f(x))=g(x+\sqrt x)=\sqrt{x+\sqrt x}$
$h(g(f(x)))=h(\sqrt{x+\sqrt x})=\frac{1}{\sqrt{x+\sqrt x}}=F(x)$
$\therefore F(x)=h\circ g\circ f$ where
$f(x)=x+\sqrt x$
$g(x)=\sqrt x$
$h(x)=\frac{1}{x}$