Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.9 Derivatives of Logarithmic and Exponential Functions - 3.9 Exercises - Page 213: 104

Answer

$$25\ln 5$$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{x \to 2} \frac{{{5^x} - 25}}{{x - 2}} \cr & {\text{rewrite}} \cr & \mathop {\lim }\limits_{x \to 2} \frac{{{5^x} - 25}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \frac{{{5^x} - {{\left( 5 \right)}^2}}}{{x - 2}} \cr & {\text{using the definition of the derivative }}f'\left( a \right) = \mathop {\lim }\limits_{x \to a} \frac{{f\left( x \right) - f\left( a \right)}}{{x - a}} \cr & {\text{comparing }}\mathop {\lim }\limits_{x \to 2} \frac{{{5^x} - {{\left( 5 \right)}^2}}}{{x - 2}}{\text{ with the definition of the derivative}} \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\mathop {\lim }\limits_{x \to 2} \frac{{{5^x} - {{\left( 5 \right)}^2}}}{{x - 2}}:f'\left( a \right) = \mathop {\lim }\limits_{x \to a} \frac{{f\left( x \right) - f\left( a \right)}}{{x - a}} \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\mathop {\lim }\limits_{x \to 2} \frac{{{5^x} - {{\left( 5 \right)}^2}}}{{x - 2}}:f'\left( 2 \right) = \mathop {\lim }\limits_{x \to a} \frac{{f\left( x \right) - f\left( 2 \right)}}{{x - 2}} \cr & {\text{we can note that }}f\left( x \right) = {5^x}{\text{ and }}a = 2 \cr & {\text{then}} \cr & \,\,\,\,\,\,\,\,f'\left( x \right) = \frac{d}{{dx}}\left[ {{5^x}} \right] \cr & \,\,\,\,\,\,\,\,f'\left( x \right) = {5^x}\ln 5 \cr & \,\,\,\,\,\,\,\,f'\left( 2 \right) = {5^2}\ln 5 \cr & {\text{and}} \cr & \,\,\,\,\,\,\,\mathop {\lim }\limits_{x \to 2} \frac{{{5^x} - 25}}{{x - 2}} = f'\left( 2 \right) = {5^2}\ln 5 \cr & \,\,\,\,\,\,\,\mathop {\lim }\limits_{x \to 2} \frac{{{5^x} - 25}}{{x - 2}} = 25\ln 5 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.