Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.9 Derivatives of Logarithmic and Exponential Functions - 3.9 Exercises - Page 213: 102

Answer

$$\frac{1}{{{e^8}}}$$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{h \to 0} \frac{{\ln \left( {{e^8} + h} \right) - 8}}{h} \cr & {\text{rewrite}} \cr & \mathop {\lim }\limits_{h \to 0} \frac{{\ln \left( {{e^8} + h} \right) - 8}}{h} = \mathop {\lim }\limits_{h \to 0} \frac{{\ln \left( {{e^8} + h} \right) - \ln \left( {{e^8}} \right)}}{h} \cr & {\text{using the definition of the derivative }}f'\left( a \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {a + h} \right) - f\left( a \right)}}{h} \cr & {\text{comparing }}\mathop {\lim }\limits_{h \to 0} \frac{{\ln \left( {{e^8} + h} \right) - \ln \left( {{e^8}} \right)}}{h}{\text{ with the definition of the derivative}} \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\mathop {\lim }\limits_{h \to 0} \frac{{\ln \left( {{e^8} + h} \right) - \ln \left( {{e^8}} \right)}}{h}:f'\left( a \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {a + h} \right) - f\left( a \right)}}{h} \cr & {\text{we can note that }}f\left( x \right) = \ln x{\text{ and }}a = {e^8} \cr & {\text{then}} \cr & \,\,\,\,\,\,\,\,f'\left( x \right) = \frac{1}{x} \cr & \,\,\,\,\,\,\,\,f'\left( {{e^8}} \right) = \frac{1}{{{e^9}}} \cr & {\text{and}} \cr & \,\,\,\,\,\,\,\mathop {\lim }\limits_{h \to 0} \frac{{\ln \left( {{e^8} + h} \right) - 8}}{h} = f'\left( {{e^8}} \right) = \frac{1}{{{e^8}}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.