Answer
\[\frac{d}{dx}\left[ \ln kx \right]=\frac{d}{dx}\left[ \ln x \right]\]
Work Step by Step
\[\begin{align}
& \frac{d}{dx}\left[ \ln kx \right],\text{ where }x>0 \\
& \text{Apply the product property for logarithms ln}\left( ab \right)=\ln a+\ln b \\
& \frac{d}{dx}\left[ \ln kx \right]=\frac{d}{dx}\left[ \ln k+\ln x \right] \\
& \text{The sum property for derivatives} \\
& \frac{d}{dx}\left[ \ln kx \right]=\frac{d}{dx}\left[ \ln k \right]+\frac{d}{dx}\left[ \ln x \right] \\
& \text{Where the derivative of a constant is 0, then} \\
& \frac{d}{dx}\left[ \ln kx \right]=0+\frac{d}{dx}\left[ \ln x \right] \\
& \frac{d}{dx}\left[ \ln kx \right]=\frac{d}{dx}\left[ \ln x \right] \\
\end{align}\]