Answer
\[\frac{dy}{dx}=\frac{1}{x}\]
Work Step by Step
\[\begin{align}
& \text{Let }x={{e}^{y}} \\
& \text{Differentiate both sides with respect to }x \\
& \frac{d}{dx}\left[ x \right]=\frac{d}{dx}\left[ {{e}^{y}} \right] \\
& 1={{e}^{y}}\frac{dy}{dx} \\
& \text{Solve for }\frac{dy}{dx} \\
& \frac{1}{{{e}^{y}}}=\frac{dy}{dx} \\
& or \\
& \frac{dy}{dx}=\frac{1}{{{e}^{y}}} \\
& \text{Back-substitute }x\text{ for }{{e}^{y}} \\
& \frac{dy}{dx}=\frac{1}{x} \\
\end{align}\]