Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.7 The Chain Rule - 3.7 Exercises - Page 194: 95

Answer

\[\frac{f'\left( x \right)g\left( x \right)-f\left( x \right)\text{ }g'\left( x \right)\text{ }}{g{{\left( x \right)}^{2}}}\]

Work Step by Step

\[\begin{align} & \frac{d}{dx}\left( \frac{f\left( x \right)}{g\left( x \right)} \right) \\ & \text{We can write }\frac{f\left( x \right)}{g\left( x \right)}\text{ as }f\left( x \right)g{{\left( x \right)}^{-1}},\text{ then} \\ & \frac{d}{dx}\left( \frac{f\left( x \right)}{g\left( x \right)} \right)=\frac{d}{dx}\left( \text{ }f\left( x \right)g{{\left( x \right)}^{-1}} \right) \\ & \text{By the product rule} \\ & \text{ }=f\left( x \right)\frac{d}{dx}\left( \text{ }g{{\left( x \right)}^{-1}} \right)+\text{ }g{{\left( x \right)}^{-1}}\frac{d}{dx}\left( f\left( x \right) \right) \\ & \text{ }=-f\left( x \right)\text{ }g{{\left( x \right)}^{-2}}\frac{d}{dx}\left( g\left( x \right) \right)+\text{ }g{{\left( x \right)}^{-1}}f'\left( x \right) \\ & \text{ }=-f\left( x \right)\text{ }g{{\left( x \right)}^{-2}}g'\left( x \right)+\text{ }g{{\left( x \right)}^{-1}}f'\left( x \right) \\ & \text{Simplifying} \\ & \text{ }=\frac{-f\left( x \right)\text{ }g'\left( x \right)}{g{{\left( x \right)}^{2}}}+\frac{\text{ }f'\left( x \right)}{g\left( x \right)} \\ & \text{ }=\frac{-f\left( x \right)\text{ }g'\left( x \right)+\text{ }f'\left( x \right)g\left( x \right)}{g{{\left( x \right)}^{2}}} \\ & \text{ }=\frac{f'\left( x \right)g\left( x \right)-f\left( x \right)\text{ }g'\left( x \right)\text{ }}{g{{\left( x \right)}^{2}}} \\ \end{align}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.