Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.7 The Chain Rule - 3.7 Exercises - Page 194: 94

Answer

\[\begin{align} & \mathbf{a}.\text{ }f\left( g\left( x \right) \right)={{e}^{g\left( x \right)}},\text{ with }g\left( x \right)=kx \\ & \mathbf{b}.\frac{d}{dx}\left[ f\left( g\left( x \right) \right) \right]=k{{e}^{kx}} \\ \end{align}\]

Work Step by Step

\[\begin{align} & \mathbf{a}. \\ & \text{Let }f\left( x \right)={{e}^{kx}} \\ & \text{We can write }{{e}^{kx}}\text{ as }{{e}^{g\left( x \right)}}\text{ with }g\left( x \right)=kx,\text{ then} \\ & f\left( g\left( x \right) \right)={{e}^{g\left( x \right)}},\text{ with }g\left( x \right)=kx \\ & \\ & \mathbf{b}. \\ & \frac{d}{dx}\left[ {{e}^{kx}} \right]=\frac{d}{dx}\left[ f\left( g\left( x \right) \right) \right] \\ & \text{By the chain rule} \\ & \frac{d}{dx}\left[ f\left( g\left( x \right) \right) \right]=f'\left( g\left( x \right) \right)g'\left( x \right) \\ & \text{Where} \\ & \frac{d}{dx}\left[ f\left( g\left( x \right) \right) \right]={{e}^{kx}}\frac{d}{dx}\left[ kx \right] \\ & \frac{d}{dx}\left[ f\left( g\left( x \right) \right) \right]={{e}^{kx}}\left( k \right) \\ & \frac{d}{dx}\left[ f\left( g\left( x \right) \right) \right]=k{{e}^{kx}} \\ \end{align}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.