Answer
$$\eqalign{
& \left( a \right){\text{Graphs}} \cr
& \left( b \right){\text{Stationary at }}t = 3,{\text{ }} \cr
& {\text{Is moving to the righ on: }}\left[ {0,8} \right) \cr
& {\text{Is moving to the left on: }}\left( {3,8} \right] \cr
& \left( c \right){\text{ }}v\left( 1 \right) = 12,{\text{ }}a\left( 1 \right) = - 6 \cr
& \left( d \right){\text{ }}a\left( 3 \right) = - 6 \cr
& \left( e \right){\text{ Increasing on: }}\left( {3,8} \right] \cr} $$
Work Step by Step
$$\eqalign{
& f\left( t \right) = 18t - 3{t^2};{\text{ 0}} \leqslant t \leqslant 8 \cr
& \left( a \right){\text{ Graph below}} \cr
& \left( b \right){\text{ }} \cr
& {\text{Position }}s = 18t - 3{t^2} \cr
& v = \frac{{ds}}{{dt}} \cr
& v = \frac{d}{{dt}}\left[ {18t - 3{t^2}} \right] \cr
& v = 18 - 6t \cr
& {\text{The object is stationary when }}v = 0 \cr
& v = 18 - 6t \cr
& 18 - 6t = 0 \cr
& t = 3 \cr
& {\text{Stationary at }}t = 3 \cr
& 18 - 6t > 0 \cr
& t < 3 \cr
& {\text{The object is moving on the interval 0}} \leqslant t \leqslant {\text{8}},{\text{ then}} \cr
& {\text{Is moving to the righ on: }}\left[ {0,8} \right) \cr
& 18 - 6t < 0 \cr
& t > 3 \cr
& {\text{The object is moving on the interval 0}} \leqslant t \leqslant {\text{8}},{\text{ then}} \cr
& {\text{Is moving to the left on: }}\left( {3,8} \right] \cr
& \cr
& \left( c \right) \cr
& v = 18 - 6t \cr
& a = \frac{{dv}}{{dt}} = - 6 \cr
& {\text{at }}t = 1 \cr
& v\left( 1 \right) = 18 - 6\left( 1 \right) \cr
& v = 12 \cr
& a\left( 1 \right) = - 6 \cr
& \cr
& \left( d \right){\text{ The velocity is 0 at }}t = 3 \cr
& a\left( 3 \right) = - 6 \cr
& \left( e \right){\text{ The speed is}} \cr
& {\text{speed}} = \left| v \right| = \left| {18 - 6t} \right| \cr
& {\text{Increasing on: }}\left( {3,8} \right] \cr} $$