Answer
$$\eqalign{
& \left( a \right){\text{Graphs}} \cr
& \left( b \right){\text{Stationary at }}t = \frac{9}{4},{\text{ }} \cr
& {\text{Is moving to the righ on: }}\left( {\frac{9}{4},3} \right] \cr
& {\text{Is moving to the left on: }}\left[ {0,\frac{9}{4}} \right) \cr
& \left( c \right){\text{ }}v\left( 1 \right) = - 5,{\text{ }}a\left( 1 \right) = - 4 \cr
& \left( d \right){\text{ }}a\left( {\frac{9}{4}} \right) = - 4 \cr
& \left( e \right){\text{ Increasing on: }}\left( {\frac{9}{4},3} \right] \cr} $$
Work Step by Step
$$\eqalign{
& f\left( t \right) = 2{t^2} - 9t + 12;{\text{ 0}} \leqslant t \leqslant {\text{3}} \cr
& \left( a \right){\text{ Graph below}} \cr
& \left( b \right){\text{ }} \cr
& {\text{Position }}s = 2{t^2} - 9t + 12 \cr
& v = \frac{{ds}}{{dt}} \cr
& v = \frac{d}{{dt}}\left[ {2{t^2} - 9t + 12} \right] \cr
& v = 4t - 9 \cr
& {\text{The object is stationary when }}v = 0 \cr
& v = 4t - 9 \cr
& 4t - 9 = 0 \cr
& t = \frac{9}{4} \cr
& {\text{Stationary at }}t = \frac{9}{4} \cr
& 4t - 9 > 0 \cr
& t > \frac{9}{4} \cr
& {\text{The object is moving on the interval 0}} \leqslant t \leqslant 3,{\text{ then}} \cr
& {\text{Is moving to the right on: }}\left( {\frac{9}{4},3} \right] \cr
& 4t - 9 < 0 \cr
& t < \frac{9}{4} \cr
& {\text{The object is moving on the interval 0}} \leqslant t \leqslant 3,{\text{ then}} \cr
& {\text{Is moving to the left on: }}\left[ {0,\frac{9}{4}} \right) \cr
& \cr
& \left( c \right) \cr
& v = 4t - 9 \cr
& a = \frac{{dv}}{{dt}} = 2 \cr
& {\text{at }}t = 1 \cr
& v\left( 1 \right) = 4\left( 1 \right) - 9 \cr
& v = - 5 \cr
& a\left( 1 \right) = 4 \cr
& \cr
& \left( d \right){\text{ The velocity is 0 at }}t = \frac{9}{4} \cr
& a\left( {\frac{9}{4}} \right) = 4 \cr
& \left( e \right){\text{ The speed is}} \cr
& {\text{speed}} = \left| v \right| = \left| {4t - 9} \right| \cr
& {\text{Increasing on: }}\left( {\frac{9}{4},3} \right] \cr} $$