Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.5 Derivatives of Trigonometric Functions - 3.5 Exercises - Page 170: 74

Answer

0

Work Step by Step

We have to determine: $L=\lim\limits_{x \to 0}\dfrac{\cos x-1}{x}$ Use the half-angle formula: $\sin^2 x=\dfrac{1-\cos 2x}{2}$ $L=-\lim\limits_{x \to 0}\dfrac{2\sin^2\dfrac{x}{2}}{x}=-2\lim\limits_{x \to 0}\dfrac{\sin\dfrac{x}{2}}{\dfrac{x}{2}}\cdot \dfrac{\sin\dfrac{x}{2}}{2}$ Use the fact that $\lim\limits_{x \to 0}\dfrac{\sin x}{x}=1$ $L=-2\lim\limits_{x \to 0}\dfrac{\sin\dfrac{x}{2}}{2}=-2\cdot \dfrac{0}{2}=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.