Answer
$2\cos 2x$
Work Step by Step
We are given the function:
$f(x)=\sin 2x$
Determine the derivative of $f(x)$. First use the identity
$\sin 2x=2\sin x\cos x$
$\dfrac{d}{dx}(\sin 2x)=\dfrac{d}{dx}(2\sin x\cos x)=2[(\sin x)'\cos x+\sin x \cos'x]$
$=2[\cos x\cos x+\sin x(-\sin x)]=2(\cos^2 x-\sin^2 x)$
Apply the identity:
$\cos 2x=\cos^2 x-\sin^2 x$
$\dfrac{d}{dx}(\sin 2x)=2\cos 2x$