Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.4 The Product and Quotient Rules - 3.4 Exercises - Page 161: 56

Answer

$$\eqalign{ & {\bf{a}}.\,\,t = 0 \cr & {\bf{b}}.\,\,{\text{Does not have}} \cr} $$

Work Step by Step

$$\eqalign{ & {\text{Let }}f\left( t \right) = 100{e^{ - 0.05t}} \cr & {\bf{a}} \cr & {\text{Find }}f'\left( t \right) \cr & f'\left( t \right) = 100\left( { - 0.05{e^{ - 0.05t}}} \right) \cr & f'\left( t \right) = - 5{e^{ - 0.05t}} \cr & {\text{Let }}f'\left( t \right) = - 5 \cr & - 5{e^{ - 0.05t}} = - 5 \cr & {e^{ - 0.05t}} = 1 \cr & t = 0 \cr & \cr & {\bf{b}}. \cr & {\text{Let }}f'\left( t \right) = 0 \cr & - 5{e^{ - 0.05t}} = 0 \cr & {e^{ - 0.05t}} = 0 \cr & {\text{There are no values of $t$ at which }}f'\left( t \right) = 0,{\text{ then}} \cr & {\text{The graph does not have a horizontal tangent line}}{\text{.}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.