Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 8 - Further Applications of Integration - 8.4 Applications to Economics and Biology - 8.4 Exercises - Page 613: 17

Answer

$\overline{x}=\frac{1-k}{2-k}\cdot \frac{b^{2-k}-a^{2-k}}{b^{1-k}-a^{1-k}}$

Work Step by Step

$$N=\int_{a}^{b}Ax^{-k}dx$$ $$N=A[\frac{x^{1-k}}{1-k}]_{a}^{b}=A(\frac{b^{1-k}}{1-k}-\frac{a^{1-k}}{1-k})$$ $$\overline{x}=\frac{1}{N}A[\frac{x^{2-k}}{2-k}]_{a}^{b}=\frac{1}{N}A(\frac{b^{2-k}}{2-k}-\frac{a^{2-k}}{2-k})=\frac{1}{A(\frac{b^{1-k}}{1-k}-\frac{a^{1-k}}{1-k})}A(\frac{b^{2-k}}{2-k}-\frac{a^{2-k}}{2-k})=\frac{1-k}{2-k}\cdot \frac{b^{2-k}-a^{2-k}}{b^{1-k}-a^{1-k}}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.