Answer
$\approx 47645$
Work Step by Step
$$\int_{0}^{T}8000e^{0.04t}\cdot e^{-rt}dt$$
$$\int_{0}^{T}8000e^{0.04t-rt}dt$$
$$8000\int_{0}^{T}e^{0.04t-rt}dt$$
$$8000\int_{0}^{T}e^{(0.04-r)t}dt$$
$$\frac{8000}{0.04-r}[e^{(0.04-r)t}]_{0}^{T}=\frac{8000}{0.04-r}(e^{(0.04-r)T}-e^{(0.04-r)0})=\frac{8000}{0.04-r}(e^{(0.04-r)T}-1)=\frac{8000}{0.04-6.2\%}(e^{(0.04-6.2\%)6}-1)\approx 47645$$