Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 8 - Further Applications of Integration - 8.2 Area of a Surface of Revolution - 8.2 Exercises - Page 596: 17

Answer

$\pi a^{2} $

Work Step by Step

The area is: $$S=\int_{0}^{\frac{a}{2}}2\pi x\sqrt{1+(\frac{dx}{dy})^{2}}~dy$$ The first derivative of $x$ with respect to $y$ is: $$x'=-\frac{y}{\sqrt{a^{2}-y^{2}}}$$ $$S=\int_{0}^{\frac{a}{2}}2\pi x\sqrt{1+(-\frac{y}{\sqrt{a^{2}-y^{2}}})^{2}}~dy$$ $$S=\int_{0}^{\frac{a}{2}}2\pi x\sqrt{1+\frac{y^2}{a^{2}-y^{2}}}~dy$$ $$S=\int_{0}^{\frac{a}{2}}2\pi x\sqrt{\frac{a^2}{a^{2}-y^{2}}}~dy$$ $$S=\int_{0}^{\frac{a}{2}}2\pi x\frac{a}{\sqrt{a^{2}-y^{2}}}~dy$$ $$S=\int_{0}^{\frac{a}{2}}2\pi \sqrt{a^{2}-y^{2}}\frac{a}{\sqrt{a^{2}-y^{2}}}~dy$$ $$S=\int_{0}^{\frac{a}{2}}2\pi a~dy$$ $$S=[2\pi ay]_{0}^{\frac{a}{2}}=2\pi a\cdot\frac{a}{2}=\pi a^{2} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.