Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 8 - Further Applications of Integration - 8.2 Area of a Surface of Revolution - 8.2 Exercises - Page 596: 15

Answer

$$ y=\frac{1}{3} x^{3 / 2} \quad(\text { for } 0 \leq x \leq 12) $$ The exact area of the surface obtained by rotating the given curve about the y-axis is $$ S=\int 2 \pi x d s=\int_{0}^{3} 2 \pi x \sqrt{1+\left(y^{\prime}\right)^{2}} d x=\frac{3712 \pi}{15} $$

Work Step by Step

The curve $$ y=\frac{1}{3} x^{3 / 2} \quad(\text { for } 0 \leq x \leq 12) $$ We have $$ y^{\prime}=\frac{1}{2} x^{1 / 2} $$ $\Rightarrow$ $$ \begin{aligned} ds &= \sqrt {1+\left(y^{\prime}\right)^{2}} dx \\ &=\sqrt{1+\{\frac{1}{2} x^{1 / 2}\}^{2}} dx\\ &=\sqrt{1+\frac{1}{4} x} dx \end{aligned} $$ So, the area of the surface obtained by rotating the curve about the y-axis $$ \begin{aligned} S &=\int 2 \pi x d s\\ &=\int_{0}^{3} 2 \pi x \sqrt{1+\left(y^{\prime}\right)^{2}} d x\\ &=\int_{0}^{12} 2 \pi x \sqrt{1+\left(y^{\prime}\right)^{2}} d x\\ &=2 \pi \int_{0}^{12} x \sqrt{1+\frac{1}{4} x} d x\\ &=2 \pi \int_{0}^{12} x \frac{1}{2} \sqrt{4+x} d x \\ &=\pi \int_{4}^{16}(u-4) \sqrt{u} d u \quad\left[\begin{array}{c} u=x+4 \\ d u=d x \end{array}\right] \\ &=\pi \int_{4}^{16}\left(u^{3 / 2}-4 u^{1 / 2}\right) d u\\ &=\pi\left[\frac{2}{3} u^{5 / 2}-\frac{8}{3} u^{3 / 2}\right]_{4}^{16}\\ &=\pi\left[\left(\frac{2}{5} \cdot 1024-\frac{8}{3} \cdot 64\right)-\left(\frac{2}{5} \cdot 32-\frac{8}{3} \cdot 8\right)\right] \\ &=\pi\left(\frac{2}{5} \cdot 992-\frac{8}{3} \cdot 56\right) \\ &=\pi\left(\frac{5952-2240}{15}\right) \\ &=\frac{3712 \pi}{15} \end{aligned} $$ The exact area of the surface obtained by rotating the given curve about the y-axis is $$ S=\int 2 \pi x d s=\int_{0}^{3} 2 \pi x \sqrt{1+\left(y^{\prime}\right)^{2}} d x=\frac{3712 \pi}{15} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.