Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - 7.8 Improper Integrals - 7.8 Exercises - Page 575: 38

Answer

Convergent $\;,\;$ 2

Work Step by Step

Let \[I=\int_{0}^{\frac{π}{2}}\frac{\cos\theta}{\sqrt{\sin\theta}} \,d\theta\] Since 0 is point of infinite discontinuity of integrand $\large\frac{\cos\theta}{\sqrt{\sin\theta}}$ \[\Rightarrow I=\lim_{t\rightarrow 0^+}\int_{t}^{\frac{π}{2}}\frac{\cos\theta}{\sqrt\sin{\theta}} \,d\theta\;\;\;\ldots (1)\] Let \[I_1=\int\frac{\cos\theta}{\sqrt{\sin\theta}} \,d\theta\] Substitute $\;r=\sin \theta\;\;\;\ldots (2)$ \[\Rightarrow dr=\cos \theta d\theta\] \[I_1=\int\frac{dr}{r^{\frac{1}{2}}}=\int r^{-\frac{1}{2}}dr\] \[I_1=2\sqrt r\] From (2) \[I_1=2\sqrt {\sin\theta}\;\;\;\ldots(3)\] Using (3) in (1) \[I=\lim_{t\rightarrow 0^+}\left[2\sqrt {\sin\theta}\right]_{t}^{\frac{π}{2}}\] \[I=\lim_{t\rightarrow 0^+}\left[2-2\sqrt {\sin t}\right]=2\] Since limit on R.H.S. of (1) exists so $I$ is convergent and $I=2$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.