Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - 7.8 Improper Integrals - 7.8 Exercises - Page 575: 37

Answer

Convergent $\;,\;$ $\large\frac{-1}{4}$

Work Step by Step

Let \[I=\int_{0}^{1}r\ln r \,dr\] Since 0 is point of infinite discontinuity of integrand $r\ln r $ \[I=\int_{0}^{1}r\ln r \,dr=\lim_{t\rightarrow 0^+}\int_{t}^{1}r\ln r \,dr\] \[I=\lim_{t\rightarrow 0^+}\int_{t}^{1}r\ln r \,dr\;\;\;\ldots (1)\] Let \[I_1=\int r\ln r \,dr\] Using integration by parts \[I_1=\ln r\int rdr-\int\left((\ln r)'\int rdr\right)dr\] \[I_1=\frac{r^2}{2}\ln r-\frac{1}{2}\int\frac{r^2}{r}dr\] \[I_1=\frac{r^2}{2}\ln r-\frac{r^2}{4}\;\;\;\ldots (2)\] Using (2) in (1) \[I=\lim_{t\rightarrow 0^+}\left[\frac{r^2}{2}\ln r-\frac{r^2}{4}\right]_{t}^{1}\] \[I=\lim_{t\rightarrow 0^+}\left[0-\frac{1}{4}-\frac{t^2}{2}\ln t+\frac{t^2}{4}\right]\] \[I=-\frac{1}{4}-\frac{1}{2}\lim_{t\rightarrow 0^+}\left(\frac{\ln t}{t^{-2}}\right) \;\;\left(\frac{\infty}{\infty} form\right)\] Using L' Hopital's rule \[I=-\frac{1}{4}-\frac{1}{2}\lim_{t\rightarrow 0^+}\left(\frac{\frac{1}{t}}{-2t^{-3}}\right)\] \[I=-\frac{1}{4}-\frac{1}{2}\lim_{t\rightarrow 0^+}\left(\frac{-t^2}{2}\right)\] \[I=\frac{-1}{4}\] Since limit on R.H.S. of (1) exists so $I$ is convergent and $I=\frac{-1}{4}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.