Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 17 - Second-Order Differential Equations - 17.2 Nonhomogeneous Linear Equations - 17.2 Exercises - Page 1207: 4

Answer

$y=y_c+y_p=e^{x}(c_{1}\cos x+c_{2} \sin x)+2+x+e^x$ or, $y=y_c+y_p=e^{x}(1+c_{1}\cos x+c_{2} \sin x)+2+x$

Work Step by Step

The auxiliary equation. $r^{2}-2r+2=0 \implies r=1\pm i$ Now, $y_c=e^{x}(c_{1}\cos x+c_{2} \sin x)$ $y_{p}=A+Bx+Ce^x$ $y_{p}'=B+Ce^x$ and $y_{p}''=Ce^x$ $(A-2B)+Bx+Ce^x=x+e^x$ $C=1$ Compare the coefficients of $e^x$ and $B=1$ Here, we have $A-2B=0 \implies A=2$ $y=y_c+y_p=e^{x}(c_{1}\cos x+c_{2} \sin x)+2+x+e^x$ or, $y=y_c+y_p=e^{x}(1+c_{1}\cos x+c_{2} \sin x)+2+x$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.