Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 16 - Vector Calculus - Review - Exercises - Page 1190: 32

Answer

$-4 \pi$

Work Step by Step

Apply Stoke's Theorem: $\iint_S curl F\cdot dS=\int_C F \cdot dr$ In the given problem, we are given that the sphere and the plane $z=1$ intersect on a circle, that implies that, $z=1; x^2+y^2=4$ Need to write these in the parametric form. $x=2 \cos t, y=2\sin t; z=t$; $0 \leq t \leq 2 \pi$ Thus, $r=\lt2 \cos t , 2\sin t, t \gt $ and $dr=\lt -2\sin t, 2\cos t ,0 \gt$ $F=x^2yz i+yz^2 j+z^3e^{xy} k $ ; Thus we have $F=\lt 8\cos^2 t \sin t,2 \sin t,e^{4 \cos t \sin t} \gt$ Now, $\int_C F \cdot dr=\int_0^{2 \pi} [\lt 8\cos^2 t \sin t,2 \sin t,e^{4 \cos t \sin t} \gt\cdot \lt -2\sin t, 2\cos t ,0 \gt] dt$ or, $\int_0^{2 \pi}-4 \sin^2 (2t)+2 \sin (2t) dt=2 \int_0^{2 \pi} (\cos 4t-1)+\sin (2t) dt$ Thus, $\int_C F \cdot dr=[\dfrac{1}{2}\sin 4 t-\cos 2t-2t]_0^{2 \pi}$ Hence, $\int_C F \cdot dr=-4 \pi$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.