Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 16 - Vector Calculus - Review - Exercises - Page 1190: 27

Answer

$\dfrac{\pi(1+391\sqrt{17})}{60}$

Work Step by Step

$dS=\iint_D\sqrt {1+(2x)^2 +(2y)^2} dy dx=\iint_D\sqrt {1+4x^2 +4y^2} dy dx$ Now, $\iint_S z dS=\iint_D (x^2+y^2) \sqrt {1+4x^2 +4y^2} dy dx$ or, $=\int_0^{2\pi}\int_0^{2}r^2\sqrt{1+4r^2}r dr d\theta$ or, $=[\theta]_0^{2\pi}\int_0^2 r^2\sqrt{1+4r^2}r dr$ Plug $1+4r^2 =u $ then we have $du=8rdr$ Then $\iint_S z dS=(\dfrac{\pi}{4})\int_1^{17}(\dfrac{u-1}{4}) [u^{1/2}] du$ or, $=(\dfrac{\pi}{16})\int_1^{17}p^{3/2}-p^{1/2} dp$ or, $=(\dfrac{\pi}{16})[\dfrac{2}{5}p^{5/2}-\dfrac{2}{3}p^{3/2}]_1^{17}$ Hence, $\iint_S z dS=\dfrac{\pi(1+391\sqrt{17})}{60}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.