Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 16 - Vector Calculus - 16.9 The Divergence Theorem - 16.9 Exercises - Page 1185: 7

Answer

$\dfrac{9 \pi}{2}$

Work Step by Step

Divergence Theorem: $\iiint_Ediv \overrightarrow{F}dV=\iint_S \overrightarrow{F}\cdot d\overrightarrow{S} $ where, $div F=\dfrac{\partial P}{\partial x}+\dfrac{\partial Q}{\partial y}+\dfrac{\partial R}{\partial z}$ Here, $div F=\dfrac{\partial P}{\partial x}+\dfrac{\partial Q}{\partial y}+\dfrac{\partial R}{\partial z}=\dfrac{\partial (3xy^2)}{\partial x}+\dfrac{\partial (xe^z)}{\partial y}+\dfrac{\partial (z^3)}{\partial z}=3(y^2+z^2)$ $\dfrac{\partial P}{\partial x}+\dfrac{\partial Q}{\partial y}+\dfrac{\partial R}{\partial z}=\iiint_E 3 \times (y^2+z^2)dV=\int_{-1}^{2}\int_0^{2 \pi} \int_0^{1} \times 3 (r^2 \cos^2 \theta+r^2 \sin^2 \theta) \times r dr d\theta dx$ $=[\int_{-1}^{2} dx] \times [\int_0^{2 \pi} d\theta] \times [\int_0^{1} 3 r^3 dr]$ $=[x]_{-1}^{2} \times [\theta]_0^{2 \pi} \times [3\dfrac{r^4}{4}]_0^{1} $ or, $=(2+1) \times [{2 \pi}-0] \times \dfrac{3}{4} $ Hence, we have $\iiint_Ediv \overrightarrow{F}dV=\iint_S \overrightarrow{F}\cdot d\overrightarrow{S}=\dfrac{9 \pi}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.