Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 16 - Vector Calculus - 16.8 Stokes' Theorem - 16.8 Exercises - Page 1179: 2

Answer

$0$

Work Step by Step

We have: $F(r(t))=\cos^2 t \sin (0) i+\sin^2 t j+\cos t \sin t k=0 i i+\sin^2 t j+\cos t \sin t k$ Since, the surface is the part of the circle $x^2+y^2=1 $ and therefore, the parameterization of the boundary can be written as: $C: r(t)=\cos t i+\sin t j+0 k \implies dr=(-\sin t i+\cos t j+0k) dt$ Stokes' Theorem states that $\iint_{S} curl F \cdot dS=\iint_{C} F \cdot dr$ where, $C$ corresponds to the boundary of the surface oriented counter-clockwise. Now, $$\iint_{S} curl F \cdot dS=\iint_{C} F \cdot dr=\int_0^{2 \pi} (0 i+\sin^2 t j+\cos t \sin t k) \cdot (-\sin t i+ \cos t j+0 k) dt \\=\int_{0}^{2 \pi} \sin^2 t \cos t dt$$ Plug $u=\sin t $ and $du =\cos t dt$ So, $\int_{0}^{2 \pi} \sin^2 t \ \cos t dt=\int_0^{2 \pi} u^2 du= 0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.