Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 16 - Vector Calculus - 16.8 Stokes' Theorem - 16.8 Exercises - Page 1179: 15

Answer

$- \pi$

Work Step by Step

The parameterization representation for the given surface can be written as: $r=\lt \cos t, 0, \sin t \gt \implies dr = \lt - \sin t ,0, \cos t \gt$ Our aim is to verify the Stokes' Theorem states that $\iint_{S} curl F \cdot dS=\iint_{C} F \cdot dr$ where, $C$ corresponds to the boundary of the surface oriented counter-clockwise. $= \int_{2 \pi}^{0} \lt 0, \sin t , \cos t \gt \cdot \lt - \sin t ,0, \cos t \gt$ or, $=\int_{2 \pi}^{0} \cos^2 t dt$ or, $= \int_{2 \pi}^{0} 1+\cos 2t dt \times \dfrac{1}{2} $ or, $=\dfrac{1}{2} \times [t+\dfrac{\sin 2t}{t}]_{2 \pi}^0$ So, $\iint_{S} curl F \cdot dS=\iint_{C} F \cdot dr =- \pi$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.