Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 16 - Vector Calculus - 16.7 Surface Integrals - 16.7 Exercises - Page 1173: 6

Answer

$\dfrac{\sqrt {2}}{10}$

Work Step by Step

When the surface is orientable then the flux through a surface is defined as: $\iint_S F \cdot dS=\iint_S F \cdot n dS$ where, $n$ is the unit vector. Since, we have $\iint_S f(x,y,z) dS \approx \Sigma_{i=1}^n f[\overline{x}, \overline{y}, \overline{z}] AS_i$ Consider $\iint_S F \cdot dS =(\sqrt 2) \int_{0}^1 \int_{0}^{\pi/2} u^3 \sin (v) \cos (v) u dA= \int_{0}^1 u^4 du \cdot \int_{0}^{\pi/2} \sin v \cos v dv \times (\sqrt 2) $ $\iint_S F \cdot dS= [\dfrac{u^5}{5}] \times (\sin^2 v/2]_0^{\pi/2} \times \iint_S F \cdot dS=\sqrt {2} \times (\dfrac{1}{5}) \times (\dfrac{1}{2})$ Hence, $\iint_S F \cdot dS =\dfrac{\sqrt {2}}{10}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.