Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 16 - Vector Calculus - 16.7 Surface Integrals - 16.7 Exercises - Page 1173: 35

Answer

$\approx 3.4895$

Work Step by Step

The flux through a surface can be defined only when the surface is orientable. We know that $\iint_S F \cdot dS=\iint_S F \cdot n dS$ Here, $n$ denotes the unit vector. Since, $\iint_S x^2y^2 z^2 dS =\iint_{D} x^2y^2z^2 \times \sqrt{1+(dz/dx)^2+ (dz/dy)^2} dA$ or, $\iint_S x^2y^2 z^2 dS =\iint_{D} x^2y^2z^2 \sqrt{1+16x^2+ 4y^2} dA$ or, $\iint_S x^2y^2 z^2 dS =\iint_{D} x^2y^2 \times (3-2x^2-y^2)^2 \times \sqrt{1+16x^2+ 4y^2} dA$ or, $\iint_S x^2y^2 z^2 dS =\int_{-\sqrt{3/2}}^{\sqrt{3/2}} x^2y^2 \times (3-2x^2-y^2)^2 \times \sqrt{1+16x^2+ 4y^2} dy dx$ Need to use calculating tool. $ \iint_S x^2y^2 z^2 dS \approx 3.4895$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.