Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 16 - Vector Calculus - 16.5 Curl and Divergence - 16.5 Exercises - Page 1149: 8

Answer

a) $-\dfrac{y}{1+y^2z^2}i-\dfrac{z}{1+z^2x^2}j-\dfrac{x}{1+x^2y^2}k$ b) $\dfrac{y}{1+x^2y^2}+\dfrac{z}{1+y^2z^2}+\dfrac{x}{1+z^2x^2}$

Work Step by Step

a) When $F=ai+bj+ck$, then we have $curl F=[c_y-b_z]i+[a_z-c_z]j+[b_x-a_y]k$ $curl F=(0-\dfrac{y}{1+(yz)^2})i+(\dfrac{z}{1+(xz)^2}-0)j+(0-\dfrac{x}{1+(xy)^2})k=-\dfrac{y}{1+y^2z^2}i-\dfrac{z}{1+z^2x^2}j-\dfrac{x}{1+x^2y^2}k$ b) $div F=\dfrac{\partial [\arctan (xy) ]}{\partial x}+\dfrac{\partial [\arctan (yz) ]}{\partial y}+\dfrac{\partial [\arctan (zx)]}{\partial z}=\dfrac{y}{1+x^2y^2}+\dfrac{z}{1+y^2z^2}+\dfrac{x}{1+z^2x^2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.