Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 16 - Vector Calculus - 16.5 Curl and Divergence - 16.5 Exercises - Page 1149: 2

Answer

a) $(4y^3z^3 - 2x^3yz)i + (0)j + (3x^2yz^2)k$ b) $x^3z^2 + 3y^4z^2$

Work Step by Step

a) $P=0$ $Q=x^3yz^2$ $R=y^4z^3$ $curl F = \left(\frac{dR}{dy} - \frac{dQ}{dz}\right)i + \left(\frac{dP}{dz} -\frac{dR}{dx}\right)j + \left(\frac{dQ}{dx} - \frac{dP}{dy}\right)k$ $ =(4y^3z^3 - 2x^3yz)i + (0)j + (3x^2yz^2)k$ b) $div F = \frac{dP}{dx} + \frac{dQ}{dy} + \frac{dR}{dz}$ $ = \frac{d}{dx}(0) + \frac{d}{dy}(x^3yz^2) + \frac{d}{dz}(y^4z^3)$ $ = 0 + x^3z^2 + 3y^4z^2$ $ = x^3z^2 + 3y^4z^2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.