Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 16 - Vector Calculus - 16.3 The Fundamental Theorem for Line Integrals - 16.3 Exercises - Page 1134: 13

Answer

$a) f(x, y) = \frac{1}{3}x^3y^3 + K$ $b) -9$

Work Step by Step

$a)$ $F(x, y) = (x^2y^3)i + (x^3y^2)j$ $\frac{dP}{dy} = 3x^2y^2$ $\frac{dQ}{dx} = 3x^2y^2$ $\frac{dP}{dy} = \frac{dQ}{dx}$, therefore $F(x,y)$ is conservative $f_x(x,y) = \int (x^2y^3)dx$ $ = \frac{1}{3}x^3y^3 + g(y)$ $f_y(x, y) = \frac{d}{dy}(\frac{1}{3}x^3y^3 + g(y))$ $ = x^3y^2 + g^1(y)$ $f(x,y) = \frac{1}{3}x^3y^3 + K$ $b)$ $0 \leq t \leq 1$ $r(t) = (t^3 - 2t, t^3 + 2t)$ $r(0) = ((0)^3 - 2(0), (0)^3 + 2(0))$ $ = (0, 0)$ $r(1) = ((1)^3 - 2(1), (1)^3 + 2(1))$ $ = (-1, 3)$` $\int_c Fdr = \int_c \nabla f$ $ = f(r(b)) - f(r(a))$ $ = f(-1, 3) - f(0, 0)$ $ = [(\frac{1}{3}(-1)^3(3)^3) - (\frac{0}{0}(0)^3(0)^3]$ $ = -9$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.